
Precalculus

2-07 Asymptotes of Rational Functions

Rational Function

- _____
- $f(x) = \frac{2x+1}{3x-4}$
- Domain: Denominator _______
- Asymptotes describe behavior of the graph at the _______

Vertical Asymptotes

- _____and ____
- Set _____ = 0 and solve for *x*

Horizontal Asymptotes

• Plug in _____number for *x* and _____

OR

- Find degree of _____(N) and ____(D)
- If N < D, _____
- If N = D, _____
- If N > D, _____

Find the asymptotes of $f(x) = \frac{5x^2}{x^2 - 1}$

For $f(x) = \frac{2x^2 - x}{2x^2 + x - 1}$

Find the domain

Find the removable discontinuity

Precalculus 2-07 Find the asymptotes			Name:
Slant Asymptote			
	and	remainder	
• If $N = D + 1$, Find the asymptotes of $f(x) = \frac{3x^2 + 1}{x}$			