Precalculus ## 2-07 Asymptotes of Rational Functions **Rational Function** - _____ - $f(x) = \frac{2x+1}{3x-4}$ - Domain: Denominator _______ - Asymptotes describe behavior of the graph at the _______ **Vertical Asymptotes** - _____and ____ - Set _____ = 0 and solve for *x* **Horizontal Asymptotes** • Plug in _____number for *x* and _____ OR - Find degree of _____(N) and ____(D) - If N < D, _____ - If N = D, _____ - If N > D, _____ Find the asymptotes of $f(x) = \frac{5x^2}{x^2 - 1}$ For $f(x) = \frac{2x^2 - x}{2x^2 + x - 1}$ Find the domain Find the removable discontinuity | Precalculus 2-07 Find the asymptotes | | | Name: | |--|-----|-----------|-------| | | | | | | | | | | | | | | | | Slant Asymptote | | | | | | and | remainder | | | • If $N = D + 1$, Find the asymptotes of $f(x) = \frac{3x^2 + 1}{x}$ |